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Abstract. We propose and analyze an optimal mass transport method for a random genetic drift problem driven by a Moran process under
weak-selection. The continuum limit, formulated as a reaction-advection-diffusion equation known as the Kimura equation, inherits degenerate
diffusion from the discrete stochastic process that conveys to the blow-up into Dirac-delta singularities hence brings great challenges to both
the analytical and numerical studies. The proposed numerical method can quantitatively capture to the fullest possible extent the development
of Dirac-delta singularities for genetic segregation on one hand, and preserves several sets of biologically relevant and computationally favored
properties of the random genetic drift on the other. Moreover, the numerical scheme exponentially converges to the unique numerical stationary
state in time at a rate independent of the mesh size up to a mesh error. Numerical evidence is given to illustrate and support these properties,
and to demonstrate the spatio-temporal dynamics of random generic drift.
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1. Introduction. In population genetics, genetic drift describes random fluctuations in the numbers of gene variants
(alleles) over time. Allele frequency, expressed as a percentage, measures the relative fraction of an allele at a particular
locus in the population, and its change quantifies the intensity of the random genetic drift [17]. Typically, when genetic
drift begins, it will continue until either i) the involved allele completely disappears from the population or ii) the allele
establishes permanently at 100% frequency (called fixed). In either case, genetic drift causes gene variants to disappear
because infrequently occurring alleles face a greater chance of being lost in a small population, or causes a new population
genetically distinct from its original population such that initially rare alleles become much more frequent and even fixed
[17, 32, 33, 37]. Both events indicate that genetic drift can decrease the population’s genetic diversity, and it plays a role
in the evolution of new species.

Mathematical modeling of genetic drift dates back to the pioneering works of Ronald Fisher [15] and Sewall Wright
[39, 40, 41]. The Wright–Fisher model employs a discrete stochastic process to model dynamics of finite populations
at the individual level under the restrictions that the generations do not overlap and that each copy of the gene of the
new generation is selected independently and randomly from the whole gene pool of the previous generation. It is later
modified and extended by Patrick Moran [28, 27] (allowing generations overlap) and Komoo Kimura [24, 21, 22, 23]
(allowing the genetic mutation to spread across the population). In particular, they show that, in the limit of a large
population and weak selection, these processes can be approximated by the same diffusion approximation, namely the
Kimura equation [22] which describes the probability of fixation of a mutant with frequency-independent fitness. The
continuum framework makes a systematic qualitative and quantitative analysis of the new model possible thanks to the
tools from modern analytical and numerical analysis.

In this paper, we consider the Moran process as a paradigm and introduce its large population limits with different
drift-diffusion scalings assumption [11]. Consider the dynamics of a population with N individuals that are distinguished
by two neutral alleles labeled A and B such that they do not affect the survival and reproduction ability of the individual.
In light of the balance between selection and drift, Traulsen et al. [35] summarized the process into three simple steps:
(a) selection–an individual is randomly selected for reproduction with a probability proportional to its fitness; (b)
reproduction–the selected individual produces one identical offspring; (c) replacement–the offspring replaces a randomly
selected individual in the population. The process is then repeated after each time step ∆t.
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Fig. 1.1: Mutation between two alleles A and B through a Moran process.

The fitness or reproduction rate of an individual depends on environmental conditions as well as the type and
frequency of its competitors. For each type, we associate a fitness function depending on the type frequency:

Ψ(A)(x;N,∆t), Ψ(B)(x;N,∆t) : [0, 1]→ R+,

through the weak selection principle for i = A,B

Ψ(i)(x;N,∆t) ≈ 1 + (∆t)νψ(i)(x) + o((∆t)ν), N ≈ ∞, ∆t ≈ 0.

In particular, when Ψ is constant, i.e., the fitness of an individual is genetically determined and not affected by interac-
tions, one recovers the classical frequency-independent Moran process.

Under the assumption N−1 ∝ (∆t)µ and a suitable time rescaling, as N → ∞, one collects from [11, 23, 35] the
following thermodynamical limit for the density f(x, t) of allele A when ν = µ = 1

2

(1.1) ft =
κ

2

(
x(1− x)f

)
xx

+
(
x(1− x)V ′(x)f

)
x
, −Replicator-Diffusion equation

where 1
N(∆t)µ → κ > 0 is a constant, and V (x) : [0, 1] → R is called the fitness potential such that V ′(x) := ψ(B)(x) −

ψ(A)(x) measures the fitness difference between the focal and opponent. (1.1) nests the following purely diffusive or
advective equation with V ≡ 0 or κ = 0

ft =
(
x(1− x)f

)
xx
, −Diffusion equation(1.1a)

ft =
(
x(1− x)V ′(x)f

)
x
, −Replicator equation(1.1b)

as two special cases such that genetic drift is the only evolutionary force in (1.1a), and the evolutionary force includes
genetic mutation, migration and selection in (1.1b). They correspond to the limits of discrete process with ν > µ = 1

2
and µ ∈ ( 1

2 , 1], ν = 1− µ, respectively.
The biological significance urges us to impose the non-flux boundary condition to each of (1.1)

(1.2)
κ

2

(
x(1− x)f

)
x

+
(
x(1− x)V ′(x)f

)
= 0, x = 0, 1,∀t > 0

such that the following conservation holds

(1.3)
d

dt

∫ 1

0

f(x, t)dx = 0,∀t > 0

and leads to well-defined evolution of the probability measure. Moreover, a second conservation law applies to the
replicator-diffusion equation (1.1) and the diffusion equation (1.1a), and it reads

(1.4)
d

dt

∫ 1

0

θ(x)f(x, t)dx = 0,∀t > 0,
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where θ(x) is the fixation probability function that satisfies

κ

2
θ′′(x)− V ′(x)θ′(x) = 0, θ(0) = 0, θ(1) = 1,

and it can be explicitly given by

(1.5) θ(x) =

∫ x
0
e

2
κV (y)dy∫ 1

0
e

2
κV (y)dy

.

One notes that (1.4) recovers the conservation of total population for (1.1) with θ(x) ≡ 1, and conservation of mass
center for (1.1a) with θ(x) = x.

In this work, we will take advantage of the fact that the following free energy admits (1.1) as a gradient flow with
respect to a variation of optimal transport distances (see e.g. [36, 6, 4, 10])

(1.6) E(f) =
κ

2

∫ 1

0

f(x, t) ln
(
x(1− x)f(x, t)

)
dx+

∫ 1

0

V (x)f(x, t)dx

and that (1.1) can be rewritten as

(1.7) ft = −gradwE(f) with gradwE(f) := −
(
x(1− x)f(x, t)

(
δE

δf

)
x

)
x

,

where δE
δf = κ

2 ln(x(1− x)f) + V (x) denotes the first variation of the energy E with a fixed mass constraint.

We now recall several theoretically relevant results on the well-posedness of (1.1)-(1.2) by [12, 11, 34]. Let us denote
by BM+([0, 1]) the space of functions with positive Radon measure in [0, 1]. A function f(x, t) ∈ L∞([0,∞);BM([0, 1]))
is called a weak solution of (1.1) and (1.2) according to [11] if the following identity holds for any test function ζ(x, t) ∈
C∞c ([0,∞)× [0, 1])

−
∫ ∞

0

∫ 1

0

f(x, t)ζt(x, t)dxdt =

∫ ∞
0

∫ 1

0

x(1− x)
(κ

2
ζxx(x, t)− V ′(x)ζx(x, t)

)
f(x, t)dxdt+

∫ 1

0

f0(x)ζ(x, 0)dx.

Then (1.1) with conservation laws (1.3)-(1.4) is well-posed as follows according to [12]:

Theorem 1.1. For any given f0 ∈ BM+([0, 1]), (1.1) under (1.2) admits a unique weak solution f(x, t) such that
f ∈ L∞

(
[0,∞);BM+([0, 1])

)
∩ C∞

(
R+, C∞((0, 1))

)
, and it satisfies the conservation laws (1.3)-(1.4). Moreover, the

solution can be written as
f(x, t) = r(x, t) + a(t)δ0(x) + b(t)δ1(x),

where r ∈ C∞
(
R+;C∞([0, 1])

)
is the classical solution to (1.1) without boundary conditions, functions a(t) and b(t) ∈

C([0,∞))∩C∞(R+) are monotonically increasing, and δy is the singular measure supported at y. Furthermore, as t→∞,
r(x, t)→ 0 uniformly and

f(·, t)→ f∞(x) :=

(
1−

∫ 1

0

f0(x)θ(x)dx

)
δ0(x) +

(∫ 1

0

f0(x)θ(x)dx

)
δ1(x),

exponentially fast with respect to a transport metric, where θ is given by (1.5).

According to Theorem 1.1, we always expect (1.1) to collapse into the Dirac-delta singularity regardless of the initial
distribution. The long-time dynamics along with this spiky spatial profile well demonstrate and capture the formation
of gene segregation, i.e., an asymptotic gene fixation with allele A (resp. allele B) occupying the whole population when∫ L

0
f0(x)θ(x)dx = 0 (resp. 1).
More recently, the gradient flow structure (1.7) has been discussed in [10]. The analysis of the model is built upon

the classical steepest descent variational schemes for nonlinear Fokker–Planck equations which are introduced in [20] and
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generalized in [1, 2]. The transport distance between probability measures has to be adapted to the degenerate diffusion
coefficient of (1.1). They introduced a suitable distance called the Shahshahani distance showing the convergence of the
variational scheme for the specific case of replicator dynamics, i.e. (1.1) without the degenerate diffusion term. It is an
open problem to show the convergence of this variational scheme including the degenerate diffusion term.

The spatial-temporal dynamics of the Kimura equation are well understood in the purely diffusive case. However, the
singularity induced by the convergence towards Dirac-delta concentrations, which well model the biologically realistic gene
segregation or fixation through the drift, imposes substantial challenges to their numerical approximation, in particular
for long-time computations. Therefore, one of the crucial features of any numerical scheme to solve (1.7), while keeping
its biological relevance, is to accurately capture the concentration phenomena at the discrete level. Lagrangian numerical
schemes for these gradient flow interpretations of one-dimensional Fokker–Planck, thin-film and quantum drift equations
have been devised by various authors, see e.g. [19, 18, 2, 38, 9, 8, 25, 31, 26, 30]. We here build upon the strategy of
solving an equivalent equation satisfied by the diffeomorphisms mapping the initial data to the solution at later times
as performed in [2, 7, 8, 3], see next section for details. We refer to [5] for a very recent review on the state of the art
of this kind of numerical schemes. The main advantage of the present approach is being able to deal with Dirac-delta
concentrations easily and rigorously now that we work in mass variables. This merit is also utilized by [2, 8, 3] to study
blow-ups in Keller–Segel models for chemotactic cellular aggregation.

Other numerical schemes have recently been proposed in the literature to solve the Kimura equation (1.1). In [13] the
authors introduced a numerical method based on Lagrangian maps that preserves the free energy decay of the system.
They also analyze a convex-concave splitting approach which leads to an implicit method, and prove the unique solvability
of this method. However, the equation is solved in the original variables therein, so they have to devise heuristic criteria
to capture the concentration of mass towards the endpoints. Moreover, they do not take full advantage of the gradient
flow structure (1.7) and the variational schemes at the discrete level. As an alternative, our approach is to construct
numerical schemes directly on the optimal maps and can describe the Dirac-delta to the fullest extent. See details in
Section 2. [42] performs an interesting “horse race” comparison of a serial of finite volume and finite element schemes
for (1.1a). Their critical comparison of the long-time asymptotic performance urges carefulness in choosing a numerical
method for this type of problem, especially when the main properties of the model are not kept by the scheme. We also
want to mention that the genetic drift problem with multi-alleles, cast as a multi-dimensional PDE, is investigated in [43]
through finite-difference methods, where the authors propose a numerical scheme with absolute stability and conserve
several biologically/physically relevant quantities such as positivity, total probability, and conservation.

The rest of this paper is organized as follows. Section 2 introduces the evolution problem for the map in mass variables
as in [2, 8, 5] together with the needed prerequisites in optimal transport theory. Since the free-energy functional shows
again in the new variables a non-convex structure, we present our numerical method and then apply it for the genetic-drift
problem by introducing the convex-splitting technique as the preprocessing step of the Euler implicit scheme. Section
3 is devoted to the analysis of the properties of the numerical scheme. We show that the discrete problem converges
exponentially fast to a unique stationary state with a monotone drift V for any fixed discretization parameter modulo
error terms in spatial discretization, and we characterize all possible stationary states and limit points otherwise. See
Theorem 3.9 and Theorem 3.12 for our main results. Finally, Section 4 conducts several sets of numerical experiments
to validate the shown properties and to accurately illustrate the long-time dynamics of random genetic drift.

2. Numerical Methods. In this section, we recast the random generic drift models into an evolution problem for
map of the mass variable, and then propose a numerical scheme to solve the new equation. Since the associated new
free-energy functional is non-convex, we introduce the convex-splitting technique as the preprocessing step of the Euler
implicit scheme in its numerical solver.

2.1. Optimal transport and the Wasserstein distance. We first introduce a suitable Wasserstein distance in
the probability space P([0, 1]) such that equation (1.1) can be interpreted as a gradient flow of the free energy (1.6). Due
to the presence of the variable coefficient x(1− x) in (1.1), the quadratic Wasserstein distance will not be based on the
usual Euclidean distance but on the induced generalized Shahshahani distance

(2.1) d2(x, y) := inf
ξ∈C1([0,1];Ω)
ξ(0)=x,ξ(1)=y

∫ 1

0

|ξ′(t)|2Tξ(t)Ωdt = inf
ξ∈C1([0,1];Ω)
ξ(0)=x,ξ(1)=y

∫ 1

0

|ξ′(t)|2

ξ(t)(1− ξ(t))
dt,
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for x, y ∈ Ω = (0, 1). Chalub et al. [10, Lemma 10] prove that the infimum in (2.1) is achieved at a unique constant-speed
geodesic, and d can be uniformly extended to Ω̄× Ω̄ as

d(x, y) =

∣∣∣∣∣
∫ y

x

du√
u(1− u)

∣∣∣∣∣ = |arcsin(2y − 1)− arcsin(2x− 1)| , x, y ∈ [0, 1];

moreover, d defines a distance in Ω̄ and the metric space (Ω̄, d) is Polish. This Shahshahani distance is locally equivalent
to the Euclidean one in the interior, but behaves differently close to the boundary. This difference is reflected by the
dynamics of replicator-diffusion equation (1.1), which is locally uniformly parabolic in the interior, but degenerate at the
boundaries.

We now present several concepts from transport theory essential for this paper. Let µ and ν be two absolutely
continuous measures with respect to the Lebesgue in P([0, 1]), and T be a measurable map from [0, 1] → [0, 1]. We say
that T transports µ onto ν and write ν = T]µ if ν(B) = µ ◦ T−1(B) for any measurable set B ⊂ [0, 1]. We also say ν is
the push-forward or the image measure of µ by T . To introduce the corresponding Wasserstein distance between µ and
ν, one defines

d2
W (x, y) := inf

T :ν=T]µ

∫ 1

0

d2(x, T (x))dµ(x),

as soon as the source measure µ has no atoms. In fact, by Brenier’s theorem, if µ is absolutely continuous with respect
to the Lebesgue measure, then there exists a measurable nondecreasing map T such that ν = T]µ. The proper definition
of the associated Wasserstein distance needs a relaxed variational scheme given by

(2.2) d2
W (x, y) := inf

Π∈Γ

{∫
[0,1]×[0,1]

|arcsin(2y − 1)− arcsin(2x− 1)|2 dΠ(x, y)

}
,

where Π runs over the set of transference plans Γ between µ and ν. One important simplification in 1D is that the optimal
plan can be characterized fully in terms of the inverse of cumulative distribution functions, see [36]. To be specific, let F
and G be the cumulative of the 1D functions f and g, and define the pseudo-inverse

Φ(η, t) := F−1(η, t) = inf{x ∈ [0, 1] : F (x, t) > η}.

By Brenier’s theorem and the definition of the image measure, we have

F (x, t) =

∫ x

−∞
f(y)dy =

∫ ϕ′(x)

−∞
g(y)dy = G ◦ ϕ′(x).

Then it is straightforward to obtain ϕ′ = G−1 ◦ F , and the Wasserstein distance in (2.2) becomes

(2.3) d2
W (µ, ν) =

∫ 1

0

d2(F−1(ω), G−1(ω))dω.

The proof of this fact without relying to Brenier’s theorem can be found in [36, Section 2.2].
By the definition of pseudo-inverse function, we can derive the following evolution equation satisfied by Φ(η, t)

(2.4)


Φt = −κ

2
Φ(1− Φ)

∂

∂η

((
∂Φ

∂η

)−1
)
− κ

2
(1− 2Φ)− Φ(1− Φ)V ′(Φ), η ∈ (0, 1), t > 0,

Φ(0, t) = 0, Φ(1, t) = 1, t > 0.

We would like to remark that, the Dirichlet boundary condition of Φ(1, t) = 1 applies here since one have from the
strong maximum principle that f(x, t) in strictly positive in [0, 1] for all time t if f0(x) ≥, 6≡ 0. This, on the other hand,
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indicates that Φ(η, t) must be strictly increasing in η, which is an important property to preserve for numerical schemes.
Actually, according to the non-flux boundary condition of f(x, t), we have

κ

2

(
x(1− x)f

)
x

+
(
x(1− x)V ′(x)f

)
= 0, x = 0, 1,∀t > 0.

If f0(x) > 0, we can obtain from the definition of Φ(η, t) that for all t > 0

Φt = −
∂F
∂t

∣∣∣
x=Φ

∂F
∂x

∣∣∣
x=Φ

= −
κ
2∂x

(
x(1− x)f

)
x=Φ

+ (x(1− x)V ′(x)f)x=Φ

f(x, t)x=Φ
= 0, at η = 0, 1.

This implies the Dirichlet boundary condition holds Φ(0, t) = 0 and Φ(1, t) = 1 for all time t. However, a free boundary
condition should be adopted if f(x, t) remains compactly supported when studying problems with diffusion degenerate
inside the domain.

Note that (2.4) has the following free energy

(2.5) E(Φ) := −κ
2

∫ 1

0

ln

(
∂Φ

∂η

)
dη +

κ

2

∫ 1

0

ln
(
Φ(1− Φ)

)
dη +

∫ 1

0

V (Φ)dη.

Then we will connect this evolution problem for the map Φ(η, t) pushing forward the initial data f0 to the solution f(x, t)
at time t with the continuum limit of implicit Euler steps obtained as Euler–Lagrange conditions for suitable variational
problems. Finally, let us restate Theorem 1.1 in terms of the map Φ(η, t).

Theorem 2.1. The map Φ(η, t) pushing forward the initial data f0 to the solution f(x, t) of the problem (1.1)-(1.2)
satisfies that

d2
W (f(·, t), f∞) =

∫ 1

0

d2
(
Φ(η, t),Φ∞(η)

)
dη → 0 exponentially fast as t→∞,

where

Φ∞(η) =

{
0 for 0 ≤ η ≤ η0,

1 for η0 < η ≤ 1,
with η0 := 1−

∫ 1

0

f0(x)θ(x)dx and θ(x)given by (1.5).

In the sequel, we will design a numerical scheme capable of accurately capturing the long-time behavior described in
Theorem 2.1.

2.2. Discretization for Euler–Lagrange of Replicator-Diffusion (1.1). We now consider the spatio-temporal
discretization for the Euler–Lagrange problem (2.4) of the full Replicator-Diffusion equation (1.1). Throughout this
paper, we assume that the time step τ and space step h are constant in the discretization. In terms of the Wasserstein
distance (2.3), the Jordan–Kinderlehrer–Otto (JKO) steepest descent scheme implies that finding the inverse distribution
function in (2.4) corresponds to solve the following for a fixed time step τ > 0

Φk+1 ∈ arg inf
ω:(ω−1)′∈A

[
E(ω) +

1

2τ
d2
W (ω,Φk)

]
over the admissible set f ∈ A := {f ∈ L1

+(0, 1) : f ln(x(1− x)f) ∈ L1(0, 1)}. In light of (2.2), we find that

δd2
W (ω,Φk)

δω
=

d

dω

∣∣arcsin(2ω − 1)− arcsin(2Φk − 1)
∣∣2

=
2√

ω(1− ω)

(
arcsin(2ω − 1)− arcsin(2Φk − 1)

)
≈ 2√

ω(1− ω)

(ω − Φk)√
ω(1− ω)

=
2(ω − Φk)

ω(1− ω)
.
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Hence an approximated Euler–Lagrange equation (2.4) associated to this minimization problem is

(2.6)
1

Φk+1(1− Φk+1)

Φk+1 − Φk

τ
= −κ

2

∂

∂η

[(
∂Φk+1(η)

∂η

)−1
]
− κ

2

1− 2Φk+1

Φk+1(1− Φk+1)
− V ′(Φk+1).

If we denote Φki = Φ(ih, kτ) for i = 0, 1, · · · , N and Nh = 1, k ∈ N, our full finite difference discretization of (2.6) is
the following implicit scheme:

(2.7)
1

Φk+1
i (1− Φk+1

i )

Φk+1
i − Φki

τ
= −κ

2

(
1

Φk+1
i+1 − Φk+1

i

− 1

Φk+1
i − Φk+1

i−1

)
− κ

2

1− 2Φk+1
i

Φk+1
i (1− Φk+1

i )
− V ′(Φk+1

i )

with the Dirichlet boundary condition Φk+1
0 = 0 and Φk+1

N = 1. The solution at each time step is computed by an
iterative Newton’s procedure with initial diffeomorphism obtained by a preprocessing step, and one does not need a CFL
condition for this implicit in time discretization.

2.2.1. Preprocessing Step via a Convex Splitting Technique. System (2.4) can be viewed as a gradient
flow associated with the energy functional (2.5). This energy has a non-convex structure, and it prohibits the direct
application of the proposed implicit scheme due to the singularity of the numerical scheme on the boundary and local
convergence of Newton’s method. However, the merits brought by the convex-splitting technique enable us to construct
a numerical scheme in the preprocessing step and then calculate the initial diffeomorphism for Newton’s method in the
Euler implicit scheme.

To this end, we write V = Vc − Ve for Vc and Ve being smooth convex functions and then apply the convex splitting
method of Eyre [14] to obtain the following semi-discrete scheme

(2.8)
1

Φk(1− Φk)

Φk+1 − Φk

τ
= −κ

2

∂

∂η

[(
∂Φk+1(η)

∂η

)−1
]
− κ

2

1− 2Φk

Φk(1− Φk)
− V ′c (Φk+1) + V ′e (Φk).

Here, the map from Φk to Φk+1 is an optimal transport in the sense that Φk+1 minimizes the functional

(2.9) J(Φ) :=
1

2τ

∫ 1

0

|Φ− Φk|2

Φk(1− Φk)
dη +W (Φ),

where W is a convex functional explicitly given by

W (Φ) = −κ
2

∫ 1

0

ln
(∂Φ

∂η

)
dη +

κ

2

∫ 1

0

1− 2Φk

Φk(1− Φk)
Φdη +

∫ 1

0

Vc(Φ)dη −
∫ 1

0

V ′e (Φk)Φdη.

Let us introduce the discrete space domain

(2.10) Q := {li : li−1 < li, 1 ≤ i ≤ N ; l0 = 0, lN = 1}

and its closure Q̄ := Q
⋃
∂Q with boundary

∂Q := {li |li−1 ≤ li, 1 ≤ i ≤ N and li−1 = li for some 1 ≤ i ≤ N ; l0 = 0, lN = 1}.

The full finite difference discretization of (2.8) is formulated as follows:

(2.11)
1

Φki (1− Φki )

Φk+1
i − Φki

τ
= −κ

2

(
1

Φk+1
i+1 − Φk+1

i

− 1

Φk+1
i − Φk+1

i−1

)
− κ

2

1− 2Φki
Φki (1− Φki )

− V ′c (Φk+1
i ) + V ′e (Φki )

with the boundary condition Φk0 = 0 and ΦkN = 1 for each k. At each time step, we solve a system of nonlinear equations
by a damped Newton’s iteration. For notational simplicity, let us denote the nonlinear functional F in (2.11) as

(2.12) F (Φk+1
i ) :=

1

Φki (1− Φki )

Φk+1
i − Φki

τ
+
κ

2

(
1

Φk+1
i+1 − Φk+1

i

− 1

Φk+1
i − Φk+1

i−1

)
+
κ

2

1− 2Φki
Φki (1− Φki )

+V ′c (Φk+1
i )−V ′e (Φki ),
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then we will calculate the Jacobian matrix DF of (2.12) and determine the Newton update γk+1,n+1 by

(2.13) DF (Φk+1,n+1)γk+1,n+1 = −F (Φk+1,n),

where index k corresponds to the temporal discretization and n to the Newton iteration. Given Φk+1,0 = Φk, k ∈ N, we
calculate Φk+1,n+1 = Φk+1,n + α(λ)γk+1,n+1 with

α(λ) =


1
λ for λ > λ′,

1−λ
λ(3−λ) for λ′ ≥ λ ≥ λ∗,
1 for λ < λ∗,

where λ∗ = 2−
√

3, λ′ ∈ [λ∗, 1) and λ(Φk+1,n) =
√
−hF (Φk+1,n)γk+1,n/a0 with a0 defined in (3.3).

3. Numerical Analysis. This section analyzes the implicit Euler scheme (2.7) and the convex splitting scheme
(2.11). We first collect several important properties of the splitting technique applied in [13] that includes the unique
solvability, convergence of the Damped Newton method (2.13) and dissipation of energy. Then we prove that there exists
a lower bound for the discrete energy, which implies the existence of numerical solutions. Finally, in light of the fact that
any steady state must be a Heaviside-type step function, we show the convergence of of the implicit scheme (2.7).

3.1. Several Properties of the Convex Splitting Scheme.

Lemma 3.1. The numerical scheme (2.11) is uniquely solvable in space Q given by (2.10).

Proof. We first introduce the discretization of (2.9) as

(3.1) JN (y) :=
h

2τ

N−1∑
i=1

(yi − Φki )2

Φki (1− Φki )
− κh

2

N−1∑
i=0

ln

(
yi+1 − yi

h

)
+
κh

2

N−1∑
i=1

1− 2Φki
Φki (1− Φki )

yi + h

N−1∑
i=1

Vc(yi)− h
N−1∑
i=1

V ′e (Φki )yi

with the given {Φki } ⊂ Q. Since JN (y) is a convex function on the closed convex set Q̄ and JN (y) = +∞ on boundary
∂Q, it is straightforward to obtain that there exists a unique minimizer x ∈ Q.

To show the unique solvability of the scheme, it suffices to prove that x ∈ Q is the minimizer of JN (y) if and only
if it is a solution of (2.11). Suppose that x ∈ Q minimizes JN (y). Define j1(ε) := JN (x + ε(y − x)). Then there exists
ε0 > 0 small enough such that x+ ε(y − x) ∈ Q for any (ε, y) ∈ (−ε0, ε0)× Q̄. Now that j1(ε) achieves its minimizer at

zero, one has j′1(0) = 0 hence h
∑N−1
i=1 (yi − xi)F (xi) = 0 for any y ∈ Q̄. Therefore, x is a solution of (2.11).

To prove the “only if” part, we assume that x ∈ Q solves the scheme (2.11) for any y ∈ Q. Then

JN (y) =JN (x+ (y − x))

=JN (x) +
h

2τ

N−1∑
i=1

(yi − xi)2

Φki (1− Φki )
+
κh

2

N−1∑
i=0

(
yi+1 − yi
xi+1 − xi

− ln
( yi+1 − yi
xi+1 − xi

)
− 1

)

+ h

N−1∑
i=1

[Vc(yi)− Vc(xi)− (yi − xi)V ′c (xi)]

≥JN (x),

where the last inequality holds since m− lnm− 1 > 0 for any positive m, and Vc is convex function with positive second
derivative. This completes the proof.

We now introduce the following concept to prove the convergence of the Newton’s method of the scheme (2.11).

Definition 3.2. ([29]) Let G be a finite-dimensional real vector space and Q be an open nonempty convex subset of
G. Then a convex function Λ ∈ C3 : Q → R is called self-concordant on Q if there exists a constant a0 > 0 such that the
following inequality holds for all x ∈ Q and all u ∈ G:

|D3Λ(x)[u, u, u]| ≤ 2a
−1/2
0 (D2Λ(x)[u, u])3/2,

where (DkΛ(x)[u1, · · · , uk] is its k-th differential taken at x alone the collection of direction (u1, · · · , uk).
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Then we have the following theorem.

Lemma 3.3. JN (y) defined in (3.1) is a self-concordant function and Newton’s iteration (2.13) is convergent in Q.

Proof. Define JN (y) := J1
N (y) + J2

N (y) with

J1
N (y) :=

h

2τ

N−1∑
i=1

(yi − Φki )2

Φki (1− Φki )
+
κh

2

N−1∑
i=1

1− 2Φki
Φki (1− Φki )

yi − h
N−1∑
i=1

V ′e (Φki )yi,

J2
N (y) := −κh

2

N−1∑
i=0

ln

(
yi+1 − yi

h

)
+ h

N−1∑
i=1

Vc(yi).

Since both the linear and quadratic functions have zero third-order derivatives, one can easily find that J1
N (y) is self-

concordant for any a0 in Q.
We proceed to prove that j2(ξ) := J2

N (y+ ξu) is a self-concordant function of ξ along every line u in Q. To this end,
we have from direct calculations that

j′′2 (ξ) =
hκ

2

N−1∑
i=0

(ui+1 − ui)2

(yi+1 + ξui+1 − yi − ξui)2
+ h

N−1∑
i=1

V ′′c (yi + ξui)u
2
i ,

j′′′2 (ξ) =− hκ
N−1∑
i=0

(ui+1 − ui)3

(yi+1 + ξui+1 − yi − ξui)3
+ h

N−1∑
i=1

V ′′′c (yi + ξui)u
3
i .

Since Vc(x) is convex and smooth, for any yi ∈ Q there exists a constant Mv > 0 such that

(3.2) |V ′′′c (yi)| ≤Mv(V
′′
c (yi))

3
2 .

Let us define

mi :=

{ ∣∣∣ ui+1−ui
yi+1+ξui+1−yi−ξui

∣∣∣ , i = 0, 1, · · · , N − 1,

(V ′′c (yi−N+1 + ξui−N+1))
1
2 |ui−N+1|, i = N, · · · , 2N − 2,

then we proceed to find that

|j′′′2 (ξ)| ≤hκ
N−1∑
i=0

|ui+1 − ui|3

|yi+1 + ξui+1 − yi − ξui|3
+ h

N−1∑
i=1

|V ′′′c (yi + ξui)||ui|3

≤hκ
N−1∑
i=0

|ui+1 − ui|3

|yi+1 + ξui+1 − yi − ξui|3
+ hMv

N−1∑
i=1

(V ′′c (yi + ξui))
3
2 |ui|3

≤hmax(κ,Mv)

2N−2∑
i=0

m3
i ≤ hmax(κ,Mv)

(
2N−2∑
i=0

m2
i

) 3
2

≤ max(κ,Mv)√
h(min(1, κ2 ))

3
2

(j′′2 (ξ))
3
2 ,

where the fourth inequality follows from the following∣∣∣∣∣
2N−2∑
i=0

m3
i

∣∣∣∣∣ ≤
(

2N−2∑
i=0

m2
i

) 1
2
(

2N−2∑
i=0

m4
i

) 1
2

≤

(
2N−2∑
i=0

m2
i

) 3
2

,

Now, let us choose

(3.3) a0 :=
4h(min(1, κ2 ))3

(max(κ,Mv))2
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with Mv satisfies (3.2), then J2
N (y) is self-concordant for y ∈ Q with parameter a0. This implies that JN (y) is self-

concordant and the Newton’s iteration is convergent thanks to Theorem 2.2.3 in [29].

Let {Φi}i=0,1,...,N be any strictly increasing sequence with Φ0 = 0 and ΦN = 1. Then the discrete free energy
functional is defined as

(3.4) EN (Φ) = −κ
2

N−1∑
i=0

ln

(
Φi+1 − Φi

h

)
h+

κ

2

N−1∑
i=1

ln (Φi(1− Φi))h+

N−1∑
i=1

V (Φi)h.

Then the following theorem states that the energy dissipation is preserved through the discretization.

Lemma 3.4. The discrete energy dissipation for the evolution of the discrete energy (3.4)

(3.5) EN (Φk+1)− EN (Φk) +

N−1∑
i=1

(
Φk+1
i − Φki

)2
Φki (1− Φki )

h

τ
≤ 0,

holds for the scheme (2.11).

Proof. We rewrite

EN (Φk+1) := E1
N (Φk+1)− E2

N (Φk+1),

with

E1
N (Φk+1) := −κ

2

N−1∑
i=0

ln

(
Φk+1
i+1 − Φk+1

i

h

)
h+

N−1∑
i=1

Vc(Φ
k+1
i )h

and

E2
N (Φk+1) := −κ

2

N−1∑
i=1

ln
(
Φk+1
i (1− Φk+1

i )
)
h+

N−1∑
i=1

Ve(Φ
k+1
i )h.

Define

δE1
N

δΦk+1
(Φk+1

i ) =
κ

2

(
1

Φk+1
i+1 − Φk+1

i

− 1

Φk+1
i − Φk+1

i−1

)
+ V ′c (Φk+1

i ),

δE2
N

δΦk+1
(Φki ) = −κ

2

1− 2Φki
Φki (1− Φki )

+ V ′e (Φki ).

According to the inequality ln(xy ) ≤ (x− y) 1
y and convexity of Vc, we can obtain

ln

(
Φk+1
i+1 − Φk+1

i

Φki+1 − Φki

)
≥ −(Φki+1 − Φki − Φk+1

i+1 + Φk+1
i )

1

Φk+1
i+1 − Φk+1

i

,

and

N−1∑
i=1

Vc(Φ
k
i )h−

N−1∑
i=1

Vc(Φ
k+1
i )h ≥

N−1∑
i=1

(Φki − Φk+1
i )V ′c (Φk+1

i )h.
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Then it follows from the summation-by-parts that

E1
N (Φk)− E1

N (Φk+1) =
hκ

2

N−1∑
i=0

ln

(
Φk+1
i+1 − Φk+1

i

Φki+1 − Φki

)
+

N−1∑
i=1

Vc(Φ
k
i )h−

N−1∑
i=1

Vc(Φ
k+1
i )h

≥ − hκ

2

N−1∑
i=0

(Φki+1 − Φki − Φk+1
i+1 + Φk+1

i )
1

Φk+1
i+1 − Φk+1

i

+

N−1∑
i=1

(Φki − Φk+1
i )V ′c (Φk+1

i )h

=
hκ

2

N−1∑
i=1

(Φki − Φk+1
i )

(
1

Φk+1
i+1 − Φk+1

i

− 1

Φk+1
i − Φk+1

i−1

)
+

N−1∑
i=1

(Φki − Φk+1
i )V ′c (Φk+1

i )h

=h

N−1∑
i=1

(Φki − Φk+1
i )

δE1
N

δΦk+1
(Φk+1

i ).(3.6)

Similarly, in light of the convexity of E2
N we find that

E2
N (Φk+1)− E2

N (Φk) ≥ h
N−1∑
i=1

(Φk+1
i − Φki )

δE2
N

δΦk+1
(Φki ).

On the other hand, let us rewrite scheme (2.11) into the following

1

Φki (1− Φki )

Φk+1
i − Φki

τ
=− δE1

N

δΦk+1
(Φk+1

i ) +
δE2
N

δΦk+1
(Φki ),(3.7)

then one infers from (3.6)-(3.7) that

EN (Φk+1)− EN (Φk) = E1
N (Φk+1)− E2

N (Φk+1)− E1
N (Φk) + E2

N (Φk)

≤
N−1∑
i=1

(
δE1
N

δΦk+1
(Φk+1

i )− δE2
N

δΦk+1
(Φki )

)(
Φk+1
i − Φki

)
h

= −
N−1∑
i=1

(
Φk+1
i − Φki

)2
Φki (1− Φki )

h

τ
≤ 0,

which is claimed.

3.2. Convergence of the Euler Implicit Scheme. We proceed to study convergence of the discrete solution of
(2.7) to a unique steady state in the long time. For this purpose we first prove the existence of this steady state. and
our argument begins with the following observation.

Lemma 3.5. Let {Φi}i=0,1,...,N be any strictly increasing sequence with Φ0 = 0 and ΦN = 1. Then the discrete free
energy functional EN (Φ) (3.4) is bounded from below for each h > 0. Moreover, the bound is of the order O(lnh) as h
goes to zero.

Proof. The trick of the proof is to find the “median” of the sequence. Let k0 be the integer such that

Φi ∈ (0,
1

2
) for i ≤ k0, and Φi ∈ [

1

2
, 1) for i > k0.

Therefore, one finds that

Φi+1 − Φi
Φi+1(1− Φi+1)

=
1

1− Φi+1
− Φi

Φi+1(1− Φi+1)

since 0<Φi+1<
1
2︷ ︸︸ ︷

≤ 2− Φi
Φi+1

≤ 2, for i = 0, 1, · · · , k0 − 1,
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and

Φi+1 − Φi
Φi(1− Φi)

≤

since Φi≥ 1
2︷ ︸︸ ︷

1

Φi
≤ 2 , for i = k0 + 1, · · · , N − 1.

These inequalities, together with the uniform boundedness |V (x)| ≤M in [0, 1], enable us to estimate

EN (Φ) ≥ κ

2
(1− h) lnh− κ

2

N−1∑
i=0

ln (Φi+1 − Φi)h+
κ

2

N−1∑
i=1

ln (Φi(1− Φi))h−M(N − 1)h

=
κ

2
(1− h) lnh− h ln(Φk0+1 − Φk0)− hκ

2

k0−1∑
i=0

ln

(
Φi+1 − Φi

Φi+1(1− Φi+1)

)

− hκ

2

N−1∑
i=k0+1

ln

(
Φi+1 − Φi
Φi(1− Φi)

)
−M +Mh

≥ κ

2
(1− h) lnh− κ

2
h(N − 1)

k0−1∑
i=0

1

N − 1
ln

(
Φi+1 − Φi

Φi+1(1− Φi+1)

)

− κ

2
h(N − 1)

N−1∑
i=k0+1

1

N − 1
ln

(
Φi+1 − Φi
Φi(1− Φi)

)
−M +Mh

≥ κ

2
(1− h) lnh−M +Mh

− κ

2
h(N − 1) ln

 1

N − 1

k0−1∑
i=0

Φi+1 − Φi
Φi+1(1− Φi+1)

+

N−1∑
i=k0+1

Φi+1 − Φi
Φi(1− Φi)


≥ κ

2
(1− h) lnh−M +Mh− κ

2
(1− 2h) ln 2,

where we apply the fact 0 < Φk0+1 − Φk0 < 1 for the second inequality and the Jensen inequality for the third one.

As a consequence we establish the existence of a stationary state realized as a minimizer of the free energy functional.
Notice that lower bound of the discrete energy functional (3.5) diverges to −∞ as h→ 0, and this is consistent with the
fact that the continuous energy functional (2.5) is not bounded from below.

Now, we are ready to show that the steady state of (2.4) must be a Heaviside step function.

Lemma 3.6. Denote {Φi}i=0,1,...,N as the discrete solution of (2.7). Define {Fki }k∈Ni=0,1,··· ,N as

(3.8) Fki := τ

k∑
j=1

Φji (1− Φji )V
′(Φji ), with F0

i = 0.

Then for any fix time step size τ > 0, the following statements hold:
(i) the conservation law holds for the scheme (2.7) as follows

(3.9) h

N−1∑
i=1

(
Φk+1
i + Fk+1

i

)
= h

N−1∑
i=1

(
Φki + Fki

)
.

(ii) let {F∗i }i=0,1,...,N be the limit of {Fki }k∈Ni=0,1,··· ,N . Introduce the sequence {Φ∗i }i=0,1,...,N

(3.10) Φ∗i =

 0, for i = 0, 1, · · · ,m,
a, for i = m+ 1,
1, for i = m+ 2, · · · , N,
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where parameters a ∈ [0, 1] and m ∈ {0, 1, · · · , N − 1} are determined by

(3.11) a(1− a)V ′(a) = 0, and

N−1∑
i=1

(Φ∗i + F∗i ) =

N−1∑
i=1

Φ0
i .

If V ′(·) does not change sign in [0, 1], the steady state of the numerical scheme (2.7) must be {Φ∗i }i=0,1,...,N .

Proof. Summing over i, one can find from (2.7) that

h

N−1∑
i=1

(
Φk+1
i + Fk+1

i

)
− h

N−1∑
i=1

(
Φki + Fki

)
=h

N−1∑
i=1

(
Φk+1
i − Φki

)
+ τh

N−1∑
i=1

Φk+1
i (1− Φk+1

i )V ′(Φk+1
i )

= − τh
N−1∑
i=1

Φk+1
i (1− Φk+1

i )

(
1

Φk+1
i+1 − Φk+1

i

− 1

Φk+1
i − Φk+1

i−1

)
− τh

N−1∑
i=1

(1− 2Φki )

=h

N−2∑
i=1

(1− Φk+1
i − Φk+1

i+1 ) + h(1− Φk+1
1 )− hΦk+1

N−1 − h
N−1∑
i=1

(1− 2Φk+1
i ) = 0,

which implies that the conservation law in (i) holds for the scheme.
Suppose that V ′(·) is of one sign in [0, 1]. Let {Φ∗i }i=0,1,...,N be an equilibrium of scheme (2.7) such that

(3.12) 0 = −κ
2

(
1

Φ∗i+1 − Φ∗i
− 1

Φ∗i − Φ∗i−1

)
− κ

2

1− 2Φ∗i
Φ∗i (1− Φ∗i )

− V ′(Φ∗i ).

Let m1 be the largest spatial index for Φ∗m1
= 0 and m2 be the smallest for Φ∗m2+2 = 1. Then (3.12) implies

0 = −κ
2

(
1

Φ∗m1+2 − Φ∗m1+1

− 1

1− Φ∗m1+1

)
− V ′(Φ∗m1+1),(3.13)

0 = −κ
2

(
1

Φ∗m2+1

− 1

Φ∗m2+1 − Φ∗m2

)
− V ′(Φ∗m2+1),(3.14)

hence V ′(Φ∗m1+1) ≤ 0 and V ′(Φ∗m2+1) ≥ 0. However, V ′(Φ∗m1+1) ≤ 0 leads a contradiction to V ′(·) > 0 since we then
must have Φ∗i ≡ 1 for i = m1 + 1, ..., N . One also gets a contradiction if V ′(·) < 0. Therefore, the definitions of m1

and m2 imply that in either case the steady state is a nondecreasing step function from zero to one, whereas the jump
location is determined by the conservation law (3.9).

Now that {Fki }k∈Ni=0,1,··· ,N is bounded in time thanks to (3.8), the Bolzano–Weierstrass theorem finds a subsequence
convergence to {F∗i }i=0,1,...,N and then the steady state can be written as (3.10) with a = 1 and m determined by (3.11).
Furthermore, for any ε > 0, we can choose τ small enough such that for all n2 > n1 > 1

|Fn2
i −F

n1
i | =

∣∣∣∣∣∣τ
n2∑

j=n1+1

Φji (1− Φji )V
′(Φji )

∣∣∣∣∣∣ ≤ τ(n2 − n1) max[0,1] |V ′(x)|
4

≤ ε,

which implies that {Fki }k∈Ni=0,1,··· ,N is Cauchy sequence with respect to k. Therefore, as τ goes to zero, we have the unique
existence of {F∗i }i=0,1,...,N , which implies the existence and uniqueness of the steady state as expected.

Remark 3.7. For diffusion equation (1.1a), (3.13) and (3.14) imply that m1 = m2 as V ′ ≡ 0, hence there exists
a ∈ (0, 1) such that the steady state is given by (3.10). Moreover, the conservation of mass center within the discrete
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scheme implies that

(3.15) a =

N∑
i=0

Φ∗i −
[ N∑
i=0

Φ0
i

]
, m = N − 1−

[ N∑
i=0

Φ0
i

]
,

where [·] it the integer-valued function. The assumption V ′(·) being one sign is technical and our numerics suggest that
the conclusion still holds if otherwise.

Lemma 3.8. Let {Φi}i=0,1,...,N be the discrete solution of (2.7). Define {Fki }k∈Ni=0,1,··· ,N as follows

Fki := τ

k∑
j=1

Φji (1− Φji )V
′(Φji ), F0

i = 0.

Then for any smooth function V (·) the following statements are true:
(i) the conservation law (3.9) holds for the scheme (2.7);

(ii) let {F∗i }i=0,1,...,N be the limit of {Fki }k∈Ni=0,1,··· ,N , then the sequence {Φ∗i }i=0,1,...,N in (3.10) supplemented by (3.11)
is a steady state of the numerical scheme (2.7).

Proof. The proof of the first statement is quite similar to that for Lemma 3.6 and it is omitted. To show that (3.10)
under (3.11) is a steady state of (2.7), we first recall that the discrete function {Φ∗i }i=0,1,...,N is an equilibrium if and
only if Φ∗i = 0 or Φ∗i = 1 or Φ∗i satisfies

0 = −κ
2

(
1

Φ∗i+1 − Φ∗i
− 1

Φ∗i − Φ∗i−1

)
− κ

2

1− 2Φ∗i
Φ∗i (1− Φ∗i )

− V ′(Φ∗i ).

In order to show that (3.10) supplemented by (3.11) is a steady state of the scheme (2.7), one only needs to verify the
condition of Φ∗m+1. If V ′(·) is strictly positive or negative, (3.11) implies that a = 0 or a = 1. If V ′(·) = 0, the steady
state is uniquely determined by (3.15). If V ′(·) changes sign in [0, 1], then (2.7) implies

(3.16) 0 = −κ
2

(
1

Φ∗m+2 − Φ∗m+1

− 1

Φ∗m+1 − Φ∗m

)
− κ

2

1− 2Φ∗m+1

Φ∗m+1(1− Φ∗m+1)
− V ′(Φ∗m+1).

Substituting Φ∗m = 0, Φ∗m+1 = a and Φ∗m+2 = 1 into (3.16) gives that V ′(a) = 0, which is expected. If {Fki }k∈Ni=0,1,··· ,N has
the limit {F∗i }i=0,1,...,N , the parameter m can be determined by (3.11). In either case, we prove the statement in (ii).

We next analyze the long time properties of the numerical scheme concerning its convergence to the steady state. We
will first show the exponential decay for the diffusion equation (1.1a) for any fixed time step size modulo error terms. As
for the replicator-diffusion equation (1.1) we will be able to obtain a similar result in the case of monotone drift fitness
potentials.

Theorem 3.9. The solution of the numerical scheme (2.7) for the diffusion equation (1.1a) satisfies

‖Φk − Φ∗‖2 ≤ ‖Φ0 − Φ∗‖2
(

1

1 + 2τ

)k
+O(h) ' C0 exp (−2kτ) +O(h) ,

for h small enough and C0 both depending only on the distance of the initial data to the steady state ‖Φ0 −Φ∗‖, that is,
the fully discrete numerical scheme converges exponentially to the steady state in time modulo O(h) terms.

Proof. To show the convergence to the steady state, we recall from Lemma 3.6 that the discrete solution takes the
form

Φ∗i =

 0, for i = 0, 1, · · · ,m,
a, for i = m+ 1,
1, for i = m+ 2, · · · , N,
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with a and m to be determined. The time evolution of the L2-distance between Φk and the stationary state Φ∗ reads

1

2τ

(
‖Φk+1 − Φ∗‖2 − ‖Φk − Φ∗‖2

)
(3.17)

=
h

2τ

m∑
i=1

[
(Φk+1

i )2 − (Φki )2
]

+
h

2τ

[
(Φk+1

m+1 − a)2 − (Φkm+1 − a)2
]

+
h

2τ

N−1∑
i=m+2

[
(Φk+1

i − 1)2 − (Φki − 1)2
]

=
h

2

N−1∑
i=1

Φk+1
i − Φki

τ
(Φk+1

i + Φki )− ah
Φk+1
m+1 − Φkm+1

τ
− h

N−1∑
i=m+2

Φk+1
i − Φki

τ

=h

N−1∑
i=1

Φk+1
i − Φki

τ
Φk+1
i − h

2

N−1∑
i=1

(Φk+1
i − Φki )2

τ
− ah

Φk+1
m+1 − Φkm+1

τ
− h

N−1∑
i=m+2

Φk+1
i − Φki

τ

≤

An︷ ︸︸ ︷
h

N−1∑
i=1

Φk+1
i − Φki

τ
Φk+1
i

Bn︷ ︸︸ ︷
−ah

Φk+1
m+1 − Φkm+1

τ

Cn︷ ︸︸ ︷
−h

N−1∑
i=m+2

Φk+1
i − Φki

τ
.

To estimate An, Bn and Cn, we apply (2.7) with V ′(·) = 0 and κ = 2 and deduce from the summation-by-part that

An =− h
N−1∑
i=1

(Φi)
2(1− Φi)

(
1

Φi+1 − Φi
− 1

Φi − Φi−1

)
− h

N−1∑
i=1

Φi(1− 2Φi)

=h

N−1∑
i=0

[
(Φi+1)2(1− Φi+1)− (Φi)

2(1− Φi)
] 1

Φi+1 − Φi
− h

N−1∑
i=1

Φi(1− 2Φi)

=h

N−1∑
i=0

[
Φi+1 + Φi − (Φi+1)2 − Φi+1Φi − (Φi)

2
]
− h

N−1∑
i=0

Φi(1− 2Φi)

=h

N−1∑
i=0

Φi+1(1− Φi)− h = h

N−1∑
i=1

Φi − h
N−1∑
i=0

(Φi+1 − Φi)Φi − h
N−1∑
i=0

(Φi)
2

≤h
N−1∑
i=1

Φi − h
N−1∑
i=0

(Φi)
2,

Bn = ahΦm+1(1− Φm+1)

(
1

Φm+2 − Φm+1
− 1

Φm+1 − Φm

)
+ ah(1− 2Φm+1)

≤ ahΦm+1(1− Φm+1)

Φm+2 − Φm+1
+ ah(1− 2Φm+1) ,

and

Cn =h

N−1∑
i=m+2

Φi(1− Φi)

(
1

Φi+1 − Φi
− 1

Φi − Φi−1

)
+ h

N−1∑
i=m+2

(1− 2Φi)

= − h
N−1∑
i=m+2

(1− Φi+1 − Φi)− h
Φm+2(1− Φm+2)

Φm+2 − Φm+1
+ h

N−1∑
i=m+2

(1− 2Φi)

= − hΦm+1(1− Φm+2)

Φm+2 − Φm+1
≤ −ahΦm+1(1− Φm+2)

Φm+2 − Φm+1
,
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where we skip the index k+1 for simplicity. On the other hand, the conservation of mass center implies that
∑N−1
i=1 Φki =

N + a−m− 2 for any k ∈ N, then

1

2τ

(
‖Φk+1 − Φ∗‖2 − ‖Φk − Φ∗‖2

)
≤h

N−1∑
i=1

Φi − h
N−1∑
i=0

(Φi)
2 + ah

Φm+1(Φm+2 − Φm+1)

Φm+2 − Φm+1
+ ah(1− 2Φm+1)

=h

N−1∑
i=1

Φi + ah− ahΦm+1 − h
N−1∑
i=1

(Φi)
2

= −

[
h

m∑
i=1

(Φi)
2 + h(Φm+1 − a)2 + h

N−1∑
i=m+2

(Φi − 1)2

]
+ 2h

m+1∑
i=1

Φi − 3ahΦm+1 + a2h

≤ − ‖Φk+1 − Φ∗‖2 + 2h

m+1∑
i=1

Φi + h.

Denote bk+1 :=
∑m+1
i=1 Φk+1

i , then accumulating (2.7) with respect to i yields

bk+1 − bk = −τ
Φk+1
m+1(1− Φk+1

m+2)

Φk+1
m+2 − Φk+1

m+1

< 0.

Since 0 ≤ bk ≤ m+ 1 for each k ∈ N, {bk} is a Cauchy sequence and limk→∞ bk =
∑m+1
i=1 Φ∗i = a ≤ 1. Therefore, for any

fixed τ > 0, there exists some k0 ∈ N such that bk+1 ≤ 2 for any k > k0, and

(3.18)
1

2τ

(
‖Φk+1 − Φ∗‖2 − ‖Φk − Φ∗‖2

)
≤ −‖Φk+1 − Φ∗‖2 + 5h,∀k > k0,

which implies that

‖Φk − Φ∗‖2 ≤
(

1

1 + 2τ

)k
‖Φ0 − Φ∗‖2 + 5h

[
1−

(
1

1 + 2τ

)k]
=
(
‖Φ0 − Φ∗‖2 − 5h

)( 1

1 + 2τ

)k
+ 5h.

Finally, let us choose the space step small such that h ≤ ‖Φ0 − Φ∗‖2/5. Then one concludes that
(

1
1+2τ

)k
≈

exp(−2kτ) ≈ exp(−2t) for τ small, and this completes the proof.

Remark 3.10. When h goes to zero, we can deduce a posteriori uniqueness of the equilibrium from the convergence
property. Indeed, let Φ̃∗ be another equilibrium state and set Φk = Φk+1 = Φ̃∗ in (3.18) with h = 0. Then we have from
the evolution that ‖Φ̃∗ − Φ∗‖2 ≤ 0 which proves the uniqueness of the stationary solution.

Remark 3.11. In the continuum case one can linearize the equation around the steady states (i.e., the Heaviside step
function) and collects the following eigenvalue problem

(3.19)

{
−ϕ′′ = λ

x(1−x)ϕ, x ∈ (0, 1),

ϕ(0) = ϕ(1) = 0,

the principle eigenvalue of which determines the exponential convergence rate of (1.1) to the unique steady state (e.g.,
Theorem 3 in [11]). One notes that λ in (3.19) has a Rayleigh’s variational quotient as

λ = inf
ϕ(0)=ϕ(1)=0,ϕ6≡0

∫ 1

0
(ϕ′)2dx∫ 1

0
x(1− x)ϕ2dx

,
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and Theorem 262 in [16] implies that λ ≥ 2, with the principal eigenvalue λ = 2 achieved at ϕ(x) = Cx(1− x) for some
C ∈ R. This indicates that the exponential convergence rate in time of our discrete scheme in Theorem 3.9 is optimal
since the decay rate cannot be better for generic initial data. Our numerical simulations in the coming section support
this conclusion.

The second main result of this paper goes as follows.

Theorem 3.12. The solution of the numerical scheme (2.7) for the Replicator-Diffusion equation (1.1) with a mono-
tone fitness potential (V ′ either non-positive or non-negative) converges exponentially to the steady state of (1.1) with
exponential rate κ (the diffusion rate) as the time step size τ goes to zero modulo O(h) terms. More precisely, the
numerical scheme (2.7) for the general replicator-dynamics equation (1.1) with a monotone fitness potential satisfies

‖Φk − Φ∗‖2 ≤ ‖Φ0 − Φ∗‖2
(

1

1 + κτ

)k
+O(h) ' C0 exp (−κkτ) +O(h) ,

for h small enough and C0 both depending only on the distance of the initial data to the steady state ‖Φ0 − Φ∗‖ and the
bound of V ′.

Proof. First of all, Lemma 3.8 implies that the sequence given by (3.10)-(3.11) is an equilibrium of (2.7). With
|V ′(·)| ≤M1 in [0, 1] for some constant M1 > 0, the same calculations in (3.17) lead to

An = − hκ

2

N−1∑
i=1

(Φi)
2(1− Φi)

(
1

Φi+1 − Φi
− 1

Φi − Φi−1

)
− hκ

2

N−1∑
i=1

Φi(1− 2Φi)− h
N−1∑
i=1

(Φi)
2(1− Φi)V

′(Φi)

≤ hκ

2

N−1∑
i=1

Φi −
hκ

2

N−1∑
i=1

(Φi)
2 +M1h

N−1∑
i=1

(Φi)
2(1− Φi),

Bn =
ahκ

2
Φm+1(1− Φm+1)

(
1

Φm+2 − Φm+1
− 1

Φm+1 − Φm

)
+
ahκ

2
(1− 2Φm+1) + ahΦm+1(1− Φm+1)V ′(Φm+1)

≤ ahκ

2

Φm+1(1− Φm+1)

Φm+2 − Φm+1
+
ahκ

2
(1− 2Φm+1) +

M1ah

4
,

and

Cn =
hκ

2

N−1∑
i=m+2

Φi(1− Φi)

(
1

Φi+1 − Φi
− 1

Φi − Φi−1

)
+
hκ

2

N−1∑
i=m+2

(1− 2Φi) + h

N−1∑
i=m+2

Φi(1− Φi)V
′(Φi)

≤ − ahκ

2

Φm+1(1− Φm+2)

Φm+2 − Φm+1
+M1h

N−1∑
i=m+2

Φi(1− Φi).

Therefore, one finds

1

2τ

(
‖Φk+1 − Φ∗‖2− ‖Φk − Φ∗‖2

)
≤ hκ

2

N−1∑
i=1

(Φi − Φ2
i ) +

ahκ

2
(1− Φm+1) +M1h

N−1∑
i=1

Φ2
i (1− Φi) +

M1ah

4
+M1h

N−1∑
i=m+2

Φi(1− Φi)

=− κh

2

[
m∑
i=1

Φ2
i + (Φm+1 − a)2 +

N−1∑
i=m+2

(Φi − 1)2

]
+
hκ

2

m+1∑
i=1

Φi −
hκ

2

N−1∑
i=m+2

Φi −
3ahκ

2
Φm+1

+
(N + a+ a2 −m− 2)hκ

2
+M1h

N−1∑
i=1

(Φi)
2(1− Φi) +

M1ah

4
+M1h

N−1∑
i=m+2

Φi(1− Φi)
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≤− κ

2
‖Φk+1 − Φ∗‖2 + hκ

m+1∑
i=1

Φi +
hκ

2

(
(N −m)−

N−1∑
i=1

Φi

)
(3.20)

+M1h

N−1∑
i=1

Φi(1− Φi) +
M1h

4
+M1h

N−1∑
i=m+2

Φi(1− Φi).

In light of the concavity of x(1− x), we can obtain from Taylor’s expansion that

Φk+1
i (1− Φk+1

i ) ≤ Φ∗i (1− Φ∗i ) + (Φk+1
i − Φ∗i )(1− 2Φ∗i ).

Substituting the inequality into (3.20) yields

1

2τ

(
‖Φk+1 − Φ∗‖2 − ‖Φk − Φ∗‖2

)
≤ − κ

2
‖Φk+1 − Φ∗‖2 + h(κ+ 3M1)

m+1∑
i=1

Φi

+ h(
κ

2
+ 2M1)

(
(N −m)−

N−1∑
i=1

Φi

)
+
M1h

4
.(3.21)

Now, let us denote dk+1 :=
∑N−1
i=1 Φk+1

i , then summing equation (2.7) with respect to i yields

dk+1 − dk = −τ
N−1∑
i=1

Φk+1
i (1− Φk+1

i )V ′(Φk+1
i ).

We next show the convergences of
∑N−1
i=1 Φk+1

i and
∑m+1
i=1 Φk+1

i provided that V ′(·) is of one sign. Case i). If

V ′(·) > 0. Let us denote for simplicity that c1k+1 :=
∑m+1
i=1 Φk+1

i , then summing equation (2.7) with respect to i yields

c1k+1 − c1k = −κτ
2

Φk+1
m+1(1− Φk+1

m+2)

Φk+1
m+2 − Φk+1

m+1

− τ
m+1∑
i=1

Φk+1
i (1− Φk+1

i )V ′(Φk+1
i ) < 0.

The fact that 0 ≤ c1k ≤ m+1 for each k ∈ N implies that {c1k} is Cauchy with the limit a. Similarly, since 0 ≤ dk ≤ N −1

and dk+1 − dk < 0, one can show that
∑N−1
i=1 Φk+1

i is Cauchy and its limit is (N + a −m − 2). Case ii). If V ′(·) < 0.

Then we denote c2k+1 :=
∑N−1
i=m+2 Φk+1

i = dk+1 − c1k+1, then summing equation (2.7) with respect to i yields

c2k+1 − c2k =
κτ

2

Φk+1
m+1(1− Φk+1

m+2)

Φk+1
m+2 − Φk+1

m+1

− τ
N−1∑
i=m+2

Φk+1
i (1− Φk+1

i )V ′(Φk+1
i ) > 0.

The fact that 0 ≤ c2k ≤ N −m − 2 for each k ∈ N implies that {c2k} is Cauchy with the limit (N −m − 2). Similarly,

since 0 ≤ dk ≤ N − 1 and dk+1− dk > 0, one can show that
∑N−1
i=1 Φk+1

i is Cauchy and its limit is (N + a−m− 2), then
{c1k} is Cauchy with the limit a.

Since c1k → a and dk → (N + a−m− 2) with 0 ≤ a ≤ 1, there exists some k1 ∈ N such that for any k > k1

m+1∑
i=1

Φk+1
i ≤ 5

4
,

N−1∑
i=1

Φk+1
i ≥ N −m− 5

2
.

Therefore from (3.21) we deduce that 1
2τ

(
‖Φk+1 − Φ∗‖2 − ‖Φk − Φ∗‖2

)
≤ −κ2 ‖Φ

k+1 − Φ∗‖2 + ( 5κ
2 + 9M1)h, and then

‖Φk − Φ∗‖2 ≤
(

1

1 + κτ

)k
‖Φ0 − Φ∗‖2 + (5 +

18M1

κ
)

[
1−

(
1

1 + κτ

)k]
h

=

(
‖Φ0 − Φ∗‖2 − (5 +

18M1

κ
)h

)(
1

1 + κτ

)k
+ (5 +

18M1

κ
)h.

Choose h ≤ ‖Φ0 − Φ∗‖2/(5 + 18M1

κ ), then for τ ≈ 0 we have
(

1
1+κτ

)k
≈ exp(−κkτ) ≈ exp(−κt).
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4. Numerical Studies. We now present several sets of numerical simulations to illustrate and verify the analytical
properties of the proposed scheme and to demonstrate further spatio-temporal dynamics within the generic drift which
are not captured by the analysis. Note that the time-dependent solution converges to the Dirac-delta function in the
long-time limit. In our map variables, this corresponds to the convergence to a stationary map Φ∞(η) given by a step
function. To deal with the issue that discrete values near the boundary are too close to be distinguished from each other
under machine precision, we set the following additional boundary criteria throughout our simulations

(4.1) Φki =

{
0, for 0 < Φki < 10−10,
1, for 1− 10−10 < Φki < 1.

4.1. Diffusion Equation. We first numerically study the purely diffusive model (1.1a). The initial data are chosen
to be either the symmetric f0(x) = π

π−2 (1− sin(πx)) or asymmetric f0(x) = 2x so we test the robustness of the proposed
scheme with respect to initial data regarding the long-time dynamics. We remind the reader that the conserved quantity
(1.4) determines asymptotically the proportion of the mass allocated to each end of the interval, that is the jump location
in mass variables, see Theorem 2.1. To study the convergence of the numerical scheme, we consider the discrete L1 error
for Φk,τi,h , i = 0, 1, ..., N as follows

Eτh(nτ) = h

N∑
i=0

∣∣∣Φk,τi,h − Φk,ref
i

∣∣∣ ,
where the reference solution Φk,ref

i is obtained with mesh size h = 1/1600 and time increment τ = 0.0005. Notice that
this quantity is equivalent to an approximation of the Monge-Kantorovich or 1-Wasserstein transport distance between
the associated densities. Moreover, the experimental order of convergence (EOC) in spatial-discretization h is defined as

EOCh := log2(Eh)− log2(Eh/2),

and the experimental order of convergence (EOC) in time-discretization τ is defined as

EOCτ := log2(Eτ )− log2(Eτ/2).

Table 4.1 presents the errors and EOCs in spatial-discretization computed at a final time T = 0.992, a multiple of
τ = 0.016, with constant time increment τ = 0.0005. We can see that difference errors decrease as the mesh is refined
and a finer spatial-discretization results in higher accuracy. Besides, the orders of convergence in spatial-discretization
indicate a convergence order of greater than one in both cases, and EOCs increase for a finer mesh. The results from
both symmetric and asymmetric initial data indicate that the proposed scheme is robust to initial data. Table 4.2 shows
the errors and EOCs in time-discretization with a fixed space mesh h = 1/1600. Similar robust convergence witnesses
that the method converges as the time mesh shrinks.

Table 4.1: Robust convergence in spatial-discretization h with τ = 0.0005 up to a terminal time T = 0.992.

f0(x) = π
π−2 (1− sin(πx)) f0(x) = 2x

h Error Eτh EOCh Error Eτh EOCh
1/50 1.021e-02 1.061e-02

1/100 5.337e-03 0.936 5.344e-03 0.989

1/200 2.597e-03 1.039 2.597e-03 1.041

1/400 1.157e-03 1.167 1.157e-03 1.166

1/800 4.010e-04 1.529 4.026e-04 1.523
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Table 4.2: Robust convergence in time-discretization τ with h = 1/1600 up to a terminal time T = 0.992

.

f0(x) = π
π−2 (1− sin(πx)) f0(x) = 2x

τ Error Eτh EOCτ Error Eτh EOCτ
0.016 4.191e-02 4.443e-02

0.008 3.058e-02 0.455 3.221e-02 0.464

0.004 2.000e-02 0.612 2.139e-02 0.590

0.002 1.042e-02 0.940 1.160e-02 0.884

0.001 3.604e-03 1.532 4.295e-03 1.433
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(a) f0(x) = π
π−2

(1 − sin(πx))

0 0.2 0.4 0.6 0.8 1
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1

(b) f0(x) = 2x

Fig. 4.1: Evolution of the inverse cumulative distribution function Φ for the Diffusion-equation (1.1a) subject
to symmetric initial data on the left and asymmetric initial data on the right. Both experiments capture
the dominance of dynamics by the Dirac-delta as stated in Theorem 2.1. In particular, one finds that the
degeneracy of diffusion at the endpoints makes the spatio-temporal dynamics of (1.1a) relatively simple in light
of the proposed mass transport method now that the singularities can be quantified.

Next we present the evolution of (1.1a) out of the initial data f0(x) = π−2
π (1− sin(πx)) and f0(x) = 2x with the step

size h = 1/999 and time step τ = 0.001. Figure 4.1 captures the convergence to the steady-state of the numerical scheme
given by a Heaviside step function, with at most one intermediate value, as stated in Lemma 3.6 or Lemma 2.1. We note
that the jump locations η0 = 1

2 and 1
3 for these two initial data, respectively, and this, together with the conservation of

center of mass, are well preserved by our method.
Figure 4.2 presents two additional sets of biologically relevant and computationally favored properties of the scheme.

For instance, the exponential dissipation of energy (3.4) in time in Figure 4.2-(Top) readily indicates that the Euler
implicit scheme (2.7) carries that from the convex splitting scheme (2.11) and the continuum equation. The quantities
in Figure 4.2 showing the decay towards steady states are computed by choosing the solution of our scheme for a longer
time as the numerically computed (proxy) stationary solution. This is essential since the energy of a Heaviside steady
state diverges to infinity in both the continuous and discrete equation according to our discussion in Lemma 3.5 and the
subsequent remarks. The evolution of the L2-norm of the difference between the numerical solution and the numerically
computed steady state is plotted in Figure 4.2-(Bottom). Notice that this quantity is equivalent to the 2-Wassertein
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Fig. 4.2: Convergence of the energy and error for diffusion equation (1.1a). Top: Dissipation of the discrete
energy E(Φ) in (3.4) to that of the (proxy) steady state in logarithmic scale. Bottom: L2-distance between
the inverse distribution function and the numerically computed steady state (as a proxy) in logarithmic scale.
One finds that the (exponential) decay rate of the discrete scheme approaches 1 as space or time mesh shrinks.
These findings agree well with Theorem 3.9.

transport distance between the associated densities. We can find that the convergence is faster than the rate obtained
in Theorem 3.9 – exponential convergence in time modulo O(h) terms. This confirms the derivation of Theorem 3.9 and
the existence of time modulo O(h) terms. We can also see that the convergence rates depend on τ and h, and as either
one shrinks, the convergence of the L2-norm fits better e−t initially, which is consistent with the theoretical analysis,
however, the decay rate is dramatically influenced by the O(h)-error in Theorem 3.9 as time evolves.

4.2. Replicator-Diffusion Equation. We proceed to study the full Replicator-Diffusion equation (1.1) that in-
cludes the forward Kimura equation with frequency selection. In particular, we restrict our attention to the choice that
V ′(x) = αx + β for some constant α and β. Throughout the simulations we fix f0(x) = 6x(1 − x) with the space mesh
size h = 1/999 and time step size τ = 10−3, and then study the variation of the diffusion rate and fitness potential,
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starting with κ = 2, V ′(x) = 4x+ 2 and κ = 4, V ′(x) = −4x+ 2 as examples.
One observes from Figure 4.3-(a) that the numerical solution converges to the step function with the discrete con-

servation laws holding. As shown in Figure 4.3-(b), there exist some jumps in the dissipation of the entropy, which can
be attributed to the additional boundary criteria (4.1). One can observe the smearing of these jumps by decreasing the
tolerance in (4.1). However, this tolerance value cannot be chosen too small either for Newton’s iterations to converge.
Finally, Figure 4.3-(c) shows the decay in the L2-distance or 2-Wassertein transport distance towards equilibration. One
again finds that the (exponential) decay rate of the discrete scheme approaches 1 as the space or time mesh shrinks for
short times. This finding agrees well with Theorem 3.12. We also observe in Figure 4.3-(Top) that the asymmetric initial
data leads to an interesting phenomena of different equilibration time scales, a first transient slower time scale in which
all the mass from the left is pushed towards 0 followed by a faster decay towards the equilibrium for large times.
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Fig. 4.3: Top: κ = 2 and V ′(x) = 4x+2. Bottom: κ = 4 and V ′(x) = −4x+2. All simulations are conducted
out of the initial data f0(x) = 6x(1 − x). (a): Convergence of the inverse cumulative distribution function Φ.
(b): Dissipation of the discrete energy E(Φ) in (3.4) to that of the (proxy) steady state in logarithmic scale. (c):
L2-distance between the inverse distribution function and the numerically computed steady state (as a proxy)
in logarithmic scale.

We remark that the proofs of our main results rely on the assumption that V ′(x) is of one sign for technique purpose,
and the numerics in the bottom of Figure 4.3 favor the application of our scheme otherwise. However, we have to exclude
the relaxation of this assumption in this work, unfortunately.

4.3. Spatial-Temporal Dynamics. We conclude this section by presenting several additional sets of numerical
experiments on the full model (1.1) to illustrate and verify our main results, and to capture the spatio-temporal dynamics
of the random genetic drift when analytical tools lack. For these purposes, we choose featured initial data to showcase
the dynamics of generic shrift to the variation of the potential function. For simplicity, we assume κ = 2 and consider
two different fitness potential V ′(x) = 2 and V ′(x) = −3x + 1. The step size h = 1/999 and time step τ = 0.001 are
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fixed for all the numerical experiments. Each row in Figure 4.4 shows the evolution of the inverse cumulative distribution
function Φ of (1.1) corresponding to the initial data depicted in each column. The dynamics are soon dominated
by the Dirac-delta concentrations at the ends of the interval in each case, though one observes relatively different
evolutionary transient phenomena such as merging of bumps and different equilibration speeds. All these findings point
to the computational/mathematical evidence that the evolutionary changes at the molecular level are caused by random
genetic drift when described by a Moran process.
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Fig. 4.4: Evolution of the full Replicator-Diffusion equation (1.1). Top: κ = 2 and V ′(x) = 2. Bottom: κ = 2
and V ′(x) = −3x+ 1 for each of the specified initial data.

Finally, we report in Table 4.3 the error of the computed jump location against the theoretical one given in Theorem
2.1. They add another layer in the robustness of our proposed scheme as the location in Φ determines the portion of the
alleles in the genetic aggregation.

Table 4.3: Computed jump location for Φki up to a terminal time T = 15.

initial data f0(x) V ′(x) Theoretical η0 Numerical η̃0 Error

x2 2 0.4065 0.4324 0.0259

-3x+1 0.2054 0.2092 0.0038

max
(
0,x(0.5−x),(x−0.7)(1−x)

) 2 0.7854 0.7948 0.0094

-3x+1 0.6172 0.6106 0.0066

1[0.5,1]
2 0.4255 0.4515 0.0260

-3x+1 0.1985 0.2032 0.0047
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